Stream Temperature Variability and its Relationship to Large-Scale Climate Indices across the United States

Claudia Corona, Mohamed Abdelkader, Sunwoo (Steve) Yoon, Ochithya Fernando, Cielo Sharkus

Mohamed

Claudia

Steve

Ochithya

Cielo

Outline

3

Motivation and Impact

Aquatic ecosystem health Motivated by climate change

Inspired by data driven resource management

SWT as an Ecosystem Water Quality Indicator

Drives ecosystem health and societal function

Serves as a key indicator of freshwater quality

Analysis of SWT supports climate adaptation and management

Average mean temperature trends, February 1895-2016 (95% confidence interval)

Statistically significant temperature trends (p=0.05) for the month of February, over the period 1895-2016.

River & Stream Temperatures

Change in average temperature since 1990

Gauges chosen based on most consistent observational record Source: USGS

CLIMATE CO CENTRAL

SWT In a Warming Climate

Advances in SWT Measurement

GOAL: Develop a SWT Dashboard for Enhanced Trend Analysis across the United States

Data Retrieval

- SWT Observations
- Stream Order
- Aridity Index
- HUC-02

Types of Climate	Values of Ia_{DM}
Arid	<i>Ia_{DM}</i> < 10
Semi-arid	$10 \le Ia_{DM} < 20$
Mediterranean	$20 \leq Ia_{DM} < 24$
Semi-humid	$24 \leq Ia_{DM} < 28$
Humid	$28 \leq Ia_{DM} < 35$
Very humid	$35 \le Ia_{DM} \le 55$
Extremely humid	$Ia_{DM} > 55$

Data Analysis

- Non-parametric tests
 - Sen Slope
 - Mann-Kendall
 - Pettitt

Evaluate non-monotonic trends

Result - SWT Variability Dashboard

✓ Stream Water Temperature (SW × +

→ C S softhack-mabdelka1-c776225f2bb346fd6c8bc81dd0be3fd85f94edb48ba3.gitlab.io

Powered by Esri

USGS	Rorth Pacific Ocean To South Pac Cean	NORTH MERICA 12 49 0.379 15 1.32 1.30 1.32 1.30 1.52 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	North Atlantic Ocean		ASIA ASIA Indian Cean	North Pačilia Ocean		
1	Street Address	1 City	1 State	1 EPA Region	Contact Info	\$ Source ID	1	Fa
	20400 LEMLEY RD	GRAND VIEW	ID	10	208834-2275	4516		Ri Ri

Earthstar Geographics | Esri, TomTom, FAO, NOAA, USG

Name	1	Street Address	1	City	1	State	1	EPA Region	1	Contact Info	1	Source ID	1	Facility Type	1
U.S. Ecology Idaho Inc Site B		20400 LEMLEY RD		GRAND VIEW		ID		10		208834-2275		4516		RCRA Subtitle C Landfill with Low Activity Radioactive Waste Authority, Commercial Radioactive Waste Disposal Facilities	
U.S. Doe Waste Isolation Pilot Plant		34 LOUIS WHITLOCK DRIVE		CARLSBAD		NM		06		575234-8177		4537		Federal Radioactive Waste Disposal Facilitie	ies
U.S. Ecology Texas LP		3277 COUNTY ROAD 69		ROBSTOWN		тх		06		361387-3518		4565		RCRA Subtitle C Landfill with Low Activity Radioactive Waste Authority, Commercial Radioactive Waste Disposal Facilities	

	Α	В	С	D	E	F	G	Н
1	longitude	latitude	id	state_code	epa_regio	facility_su	facility_typ	oe_ids
2	-120.172	41.53219	20205	CA	9	1	2	
3	-85.9257	33.6805	20206	AL	4	1	2	
4	-87.9955	31.279	20207	AL	4	1	2	

E	F	G	Н	I
EPARegion	ContactInfo	SourceID	FacilityType	CategoryAssignment
04	229-317-2629	15635	Rendering Facilities	Category6
04	229-317-2629	15636	Rendering Facilities	Category6

Thermal Heat Sources - Valuable Resource

Steam Temperature API project

Trend Analysis Results:

An Alarming Increase in SWT across the United Stated

Result - Trends as Function of HUC2 Regions

Steam Temperature API project

Result - Aridity Index

15

Result - Stream Order

16

Result - Link with Large-Scale Climate Indices

- Seasonal patterns in the relationship between maximum recorded SWT and selected climatic indices.
- Seasons marked with an asterisk denote the period preceding the water year of the recorded maximum SWT.
- Relationships extending outside the shaded region demonstrate significance at the 10% confidence level.

Steam Temperature API project

Our study found that stream water temperatures show the greatest variability in humid regions.

Across all hydrologic unit regions regions, there is a concerning uniform increase in stream water temperatures.

Conclusions

SWT variation as function of stream order did not display a significant spatial relationship.

Thank you for your attention!

Claudia, Mohamed, Steve, Ochithya, Cielo

Questions? Join our Menti Poll!

References

- Barbarossa, V., Bosmans, J., Wanders, N., King, H., Bierkens, M.F.P., Huijbregts, M.A.J., Schipper, A.M., 2021. Threats of global warming to the world's freshwater fishes. Nat Commun 12, 1701. <u>https://doi.org/10.1038/s41467-021-21655-w</u>
- Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T.B.M.J., Bobée, B., 2007. A Review of Statistical Water Temperature Models. Canadian Water Resources Journal 32, 179–192. <u>https://doi.org/10.4296/cwrj3203179</u>
- Caissie, D., El-Jabi, N., St-Hilaire, A., 1998. Stochastic modelling of water temperatures in a small stream using air to water relations. Canadian Journal of Civil Engineering 25.
- Fuller, M.R., Detenbeck, N.E., Leinenbach, P., Labiosa, R., Isaak, D., 2023. Spatial and temporal variability in stream thermal regime drivers for three river networks during the summer growing season. J American Water Resour Assoc 1752–1688.13158. <u>https://doi.org/10.1111/1752-1688.13158</u>
- Helsel, D.R., Hirsch, R.M., 2002. Chapter A3: Statistical Methods in Water Resources, in: Techniques of Water Resources Investigations, Book 4. U.S. Geological Survey, p. 522.
- Johnson, S.L., Jones, J.A., 2000. Stream temperature responses to forest harvest and debris flows in western Cascades, Oregon 57.
- Maheu, A., Poff, N.L., St-Hilaire, A., 2016. A Classification of Stream Water Temperature Regimes in the Conterminous USA. River Research & Apps 32, 896–906. <u>https://doi.org/10.1002/rra.2906</u>

References

- Miller, M.P., Burley, T.E., McCallum, Brian E., 2022. USGS National Water Dashboard (Fact Sheet No. 2022–3003), Water Priorities for the Nation. United States Geological Survey, Reston, VA.
- Patra, R.W., Chapman, J.C., Lim, R.P., Gehrke, P.C., Sunderam, R.M., 2015. Interactions between water temperature and contaminant toxicity to freshwater fish. Enviro Toxic and Chemistry 34, 1809–1817. <u>https://doi.org/10.1002/etc.2990</u>
- Risley, J.C., Constantz, J., Essaid, H., Rounds, S., 2010. Effects of upstream dams versus groundwater pumping on stream temperature under varying climate conditions: Upstream Dam and Groundwater Pumping Impacts. Water Resour. Res. 46. <u>https://doi.org/10.1029/2009WR008587</u>
- Rogers, J.B., Stein, E.D., Beck, M.W., Ambrose, R.F., 2020. The impact of climate change induced alterations of streamflow and stream temperature on the distribution of riparian species. PLoS ONE 15, e0242682. <u>https://doi.org/10.1371/journal.pone.0242682</u>
- Siegel, J.E., Fullerton, A.H., FitzGerald, A.M., Holzer, D., Jordan, C.E., 2023. Daily stream temperature predictions for free-flowing streams in the Pacific Northwest, USA. PLOS Water 2, e0000119. <u>https://doi.org/10.1371/journal.pwat.0000119</u>
- U.S. Geological Survey. 2016. "National Water Information System Data Available on the World Wide Web (USGS Water Data for the Nation)." <u>https://doi.org/10.5066/F7P55KJN</u>
- Ward, J.V., 1998. Riverine landscapes: Biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation 83, 269–278. <u>https://doi.org/10.1016/S0006-3207(97)00083-9</u>
- Westra, S., Alexander, L.V., Zwiers, F.W., 2013. Global Increasing Trends in Annual Maximum Daily Precipitation. Journal of Climate 26, 3904–3918. <u>https://doi.org/10.1175/JCLI-D-12-00502.1</u>