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What is Turbidity?

Sources: https://www.usgs.gov/; https://mrbdc.mnsu.edu/

Turbidity is linked to the look of water and 
therefore the public’s perception of water 
quality.

https://www.usgs.gov/
https://mrbdc.mnsu.edu/


Turbidity is critical for a thriving aquatic ecosystem

Source: (Newcombe & Jensen, 1996)



Turbidity also affects water utility

● WHO recommendation for drinking water 
≤5 NTU. For chlorinated water <1 NTU

● In the US the turbidity cannot exceed 1 
NTU at the plant outlet

● Most drinking water utilities aim for levels 
as low as 0.1 NTU.

Source: https://www.manxtechgroup.com/measuring-turbidity



Problem 
Statement 

• Only a limited number of USGS stations
record stream turbidity data.

• Manually, filtering out these stations and
accessing their daily data-updates is laborious
& time consuming.

Source: https://mrbdc.mnsu.edu/

Water samples from the Le Sueur River, Minnesota in 2002

• Our team identified 
the lack of an 
automated, easy to 
access system 
dedicated to stream 
turbidity, that can 
expedite the above 
process.



Dashboards: present data in a user-friendly design

• Dashboards are crucial in 
today’s data driven 
environment (Sarikaya et al. 
2019)

• A valuable tool for decision-making
& problem solving

(Abduldaem & Gravell, 2019)



Flow Diagram



Data

• Turbidity levels (FNU units, variable code 63680)

• Commonly recorded at a fixed interval of 15- to 60-minutes and 
transmitted to the USGS every hour

• USGS sites within Portland area, OR

• HydroLang to connect to the USGS API and fetch instantaneous  
turbidity data



Analysis: data preparation

• Handle USGS data misalignment for values
and dates.

• Handle missing values:
• Large periods with missing data were excluded from 

the analysis.
• Smaller gaps - interpolation with 'time' parameter to fill 

NaN values for time series data. 



Analysis: basic statistics & seasonal trends

• Basic statistics (median values, min & max)

• Boxplots for quick seasonal trends visualization

• Time series decomposition analysis

Spring

Summer Fall

Winter

Month-by-month analysis



Analysis: forecast models (XGBoost)

Error Metrics On Test Set
● RMSE error is 51619

● MAE error is 192.70

● MAPE error is 970.78



Results & Recommendations
● There are visible trends in seasonal turbidity changes in the

Portland area: lower turbidity values at the end of summer

(July-September), higher values during winter months

(December-January).

● Additional watershed and stream parameters are needed for

a comprehensive analysis of water quality and ecosystem

health.



Turbidity Dashboard

Link to Live Demo of Dashboard

https://sergiomendozajr.com/projects/watersofthack-capstone-project-turbidity-dashboard/index.html


Conclusion

USGS turbidity data is sparse and not easily accessible.

The turbidity dashboard demonstrated its high 
efficiency in time series analysis and forecasting 
available data.

Future work might focus on expanding the dashboard's 
functions to include additional water quality 
parameters.



Challenges

1. USGS Data retrieval
❏ limited, sparse data
❏ inconsistencies in records
❏ not easily accessible 

1. HydroLang
❏ Difficulties due to documentation:
❏ limited data sources
❏ only partially extracts data (some 

stations are not available)
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