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Abstract   

Our study, 'Web-based Integrated drought Monitoring and Analysis with Copula Models’, addresses 

a pressing issue in the field of hydrology and climate change. Drought, a threatening hydro-climatic 

extreme event, is one of the costliest natural disasters globally, causing widespread famine, loss of 

life, and various socio-economic impacts. In the United States, drought effects range from individual 

hardships to regional economic slowdowns and environmental degradation, including increased 

wildfire hazards. Droughts are increasingly influenced by climate change, affecting their frequency 

and severity. Various studies have mainly focused on understanding drought vulnerability using 

indices like the Drought Vulnerability Index (DVI) and the Multivariate Drought Index (MDI). 

However, progress is still lacking when it comes to the simultaneous occurrence of different drought 

types, which has limited our understanding of drought propagation. This study introduces an online 

portal developed within the Hydrolang infrastructure, providing easy access to large-scale data 

services from the United States Geological Services (USGS). The portal enables bivariate drought 

analysis, offering tools for assessing various drought types. As a test case, we evaluate droughts 

over the Alabama Coosa-Tallapoosa (ACT) River Basin, covering the northeastern and east-central 

sections of Alabama, northwestern Georgia, and part of Tennessee. Given the projected increase in 

drought frequency and severity due to climate change, this study examined the simultaneous 

occurrence of different drought severities and intensities, focusing on precipitation and streamflow 

deficits modeled using the elliptical and  Archimedean family of bivariate copulas. We expect that 

our findings will provide valuable insights for water resource managers and policymakers, 

particularly in drought-prone regions, to enhance water allocation, conservation, and infrastructure 

planning.   

Keywords: Drought propagation, Precipitation, Streamflow, Hydrolang, Copulas  

1. Introduction   

Drought is an extreme hydro-climatic event marked by severe deficiencies in water availability 

(Konapala & Mishra, 2017). Droughts have caused huge losses globally, with severe impacts 
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resulting in increased plant mortality, reduced water availability, and loss of livelihood from the 

affected socio-economic conditions of the region. In the U.S., the drought impacts are from personal 

to regional levels. Small-scale farmers are left with no option but to kill their livestock due to a lack 

of enough water for drinking or feeds. At the same time, environmental degradation, economic 

slowdown, and multiple hazards like wildfires are felt at the regional level (Engström et al., 2020). 

Droughts commonly occur naturally. However, their frequency  

and severity are subject to change due to rampant climate change (Dai, 2011; Keellings & Engström, 

2019; Madadgar & Moradkhani, 2013; Mukherjee et al., 2018). Due to the multifaceted nature of 

drought, various drought types are defined based on the monitoring method for any impacted sector. 

Drought events are mainly classified as meteorological (precipitation shortages), agricultural 

(decreased soil moisture), hydrological (decreased streamflow), and socioeconomic (failure to meet 

societal needs) (Engström et al., 2020).  Based on the available conceptual models (Van Loon et al. 

2016), the different types of droughts commonly occur in a particular sequence: a deficit in the 

precipitation leads to a meteorological drought, and its combination with high evapotranspiration 

leads to agricultural drought (Hagenlocher et al.,2020). Hydrological droughts occur because of 

temperature anomalies and precipitation shortfalls. Socioeconomic drought occurs because of less 

supply of particular economic goods due to other drought types, such as meteorological, 

agricultural, and hydrological droughts (Van Loon et al., 2016; Wang et al., 2016).  

Numerous scholars and researchers have conducted studies on drought; Engström et al., 2020 

studied Drought Vulnerability in the U.S. using three main factors: sensitivity, exposure, and 

adaptive capacity. In this study, the adaptive capacity was assessed through a set of socio economic 

and environmental indicators such as existing infrastructure, water management practices, and 

community preparedness that reflect a state's ability to cope with drought. A Drought Vulnerability 

Index (DVI) was used by combining biophysical and socio-economic data. However, the study 

acknowledges that the current indicators may not capture the complexity of adaptive capacity fully, 

suggesting that future research should focus on developing more comprehensive quantitative 

measures such as regional forecasting and more detailed studies for areas with high uncertainty DVI. 

Rajsekhar et al.,2015 studied drought causality, vulnerability, and hazard assessment for futuristic 

socioeconomic scenarios by developing an integrated framework that quantifies drought causality, 

hazard, and vulnerability by considering various drought forms (meteorological, agricultural, and 

hydrological) and their interactions with future socioeconomic scenarios. In this study, a 

Multivariate Drought Index (MDI) was used to quantify different physical forms of drought 

simultaneously, Causal Analysis to identify dominant drought triggers and develop causal maps that 

visualize information flow within the natural system, and Risk Assessment in order to incorporate 

vulnerability indicators alongside drought hazard assessments. However, the study identified the 

need for more socioeconomic indicators and their interactions and the need for long-term monitoring 

to track changes in drought patterns. Fangyue et al., 2021 studied how observed precipitation reveals 

longer and more variable drought. Mann-Kendall  trend tests and Regional Kendall tests were 

utilized to assess trends in the mean state and  variability of these precipitation metrics. There was 

an increased interannual variability in  both precipitation and dry intervals.  

(Van Loon et al., 2012) studied drought propagation in large-scale hydrological models, looking at 
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how these models reproduce the transition from meteorological drought (caused  by insufficient 

precipitation) to hydrological drought (characterized by reduced water  availability in rivers, lakes, 

and groundwater). Results from the models effectively simulated  the relationship between 

meteorological and hydrological droughts, with minimal lag time  between the onset of precipitation 

deficits and hydrological drought. However, there were  

accuracy issues regarding the simulation of drought characteristics in slowly responding  systems, 

which led to an overestimation of short drought events. It also noted that future  studies should 

consider the anthropogenic influence such as groundwater extraction and  representation of storage 

processes in the modeling process.  

Over the past decades, this disaster has affected the well-being of the people, environment,  and 

economy. It is believed that its frequency and severity will significantly increase across  the U.S. 

and the world at large due to climate change (IPCC 2012; Trenberth et al. 2013,  UNCCD 2016). 

Although many scholars in the U.S. have conducted several vulnerability studies  on more damaging 

hazards such as tornadoes (Boruff et al., 2003; Senkbeil et al., 2014; Strader  et al., 2017), hurricanes 

(Cho & Chang, 2017; Pita et al., 2015; Song et al., 2020), and floods  (Alipour et al., 2020; Cho & 

Chang, 2017; Cutter et al., 2013; Nasiri et al., 2016), less attention  has been given to a greater 

understanding of the simultaneous occurrence of multiple drought  types in the U.S. Therefore, this 

study seeks to understand the simultaneous occurrence of  different drought types, explicitly looking 

at precipitation deficit translates into stream flow  deficits and the conditional probability that a 

hydrological drought occurs given a  meteorological drought for drought propagation evaluation. 

This study will enhance our  understanding of drought dynamics based on watershed uniqueness, 

which is paramount for  predicting and managing water scarcity and other related adverse impacts. 

It will act as a piece  of valuable information for water resource managers and policymakers in 

making informed  decisions for water allocation, conservation strategies, and infrastructure 

planning,  particularly in regions prone to drought.  

As such, the objective of this paper is to examine how precipitation droughts are transformed  into 

streamflow/hydrological droughts at stream-gauging locations. We intend to answer two  questions:  

1. What is the probability of observing both hydrological and meteorological drought at  once 

P(SSFI<= -1, SPI<= -1)?  

2. What is the probability of observing hydrological drought given that meteorological  

drought has occurred P(SSFI<= -1| SPI = -1)?  

Before performing any statistical analysis, we need to make sure that we meet the stationarity  

requirements. To this end, we will standardize the dataset to remove influences of  autocorrelation 

and seasonality in our datasets.  

1. Data and Research Area  

1.1. Observed precipitation and streamflow  

The precipitation and discharge data used in this study was sourced from the United States  

Geological Survey (USGS) National Water Information System  (http://waterdata.usgs.gov/nwis) 
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for the period 1990 to 2023 at a daily time step. We used a  JavaScript-based approach to visualize 

and interact with hydrological data using the  HydroLang framework data retrieval module. The 

core functionality was implemented  through the following essential functions:  

1. Initialization - The Hydrolang object was created to manage hydrological data and  map 

interactions. Global variables were set up to handle overlay variability and  GeoJSON data.  

2. Polygon layer loading - The loadPolygon function fetched and loaded the GeoJSON file  

containing polygon boundary data. This extracted geographic coordinates to initialize  a 

map view and overlay the boundary  

3. Data retrieval: the retriveData function accessed the USGS WaterOneFlow API to  obtain 

site data within the specified bounds. The data was transformed into a suitable  format for 

further processing.  

4. Data filtering and mapping: the renderLocationsfunction processed the retrieved data  to filter 

stations located within the defined polygon. It classified them based on the  presence of 

discharge and precipitation measurements. Stations were then displayed  on the map with 

interactive pop-ups showing detailed information.   

5. Data Visualization and Download: the retrieveValues function enabled retrieval and  

visualization of discharge and precipitation data for selected sites. This also included  

functionality to display in charts and tables and offered download options for the data  in 

CSV format.  

The daily data was then rescaled to a monthly period for further analysis. This was done in a  python-

based environment by appending the columns within the retrieved CSV and creating  a data frame 

of stations and associated monthly discharge and precipitation.  

1.2. Study area  

The study area comprises the Alabama Coosa-Tallapoosa (ACT) River Basin, which covers the 

northeastern and east-central sections of Alabama, northwestern Georgia, and part of  Tennessee 

(Fig. 1). The Basin has an approximate area of 59,100 km2 with 14 US Hydrologic  Subbasins 

(HUC08s). The Coosa and Tallapoosa rivers form the Alabama River near  Montgomery. The terrain 

of the subregion is relatively flat, with few mountainous regions in  the north. As per the National 

Elevation Dataset, the area elevation ranges from sea level - 1278 m (Gesch et al., 2002). The 

watershed receives an average yearly precipitation of 1379  mm, mainly from rainfall. The main 

land cover is the Forest, which results in higher  evapotranspiration (762–1067) mm. Streamflow is 

highly regulated by reservoirs (15 large  reservoirs) and (or) a system of dams (5 Federal dams) 

(Ruddy & Hitt, 1990).  

In order to analyze drought propagation, the uppermost upstream part of the watershed was  selected 

as it would reduce the need to evaluate additional variables and inflows that may  originate from 

them. The study area shown in Figure 1 encompasses multiple discharge  measuring stations and is 

suitable for the analysis. In addition, this sub-watershed experiences  little to no spatial variability 

in observed precipitation, thus reducing the computation  complexity of analysis. 
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Figure 1: The study area  

2. Methodology  

2.1. Drought Indices: SPI and SSFI  

In our study, we focus on analyzing precipitation to streamflow droughts within the ACT  watershed. 

The Standardized Precipitation Index introduced by McKee et al, 1993, was  designed to determine 

the precipitation deficit over a given period in relation to a historical  mean. It shows the 

standardized deviation of the actual rainfall from the rainfall probability  distribution function 

(Naresh Kumar et al., 2009). Over the recent years, it has gained much  visibility as an indicator of 

potential droughts. The SPI is determined by fitting a probability  distribution to the rainfall data 

and transforming it into a standardized normal distribution  (Balew et al., 2021). Its primary purpose 

is to transform the mean and the standard deviation  of the precipitation values to 0 and 1.0, 

respectively. Any skewness of the existing data can be  readjusted to 0. Standardized Streamflow 

Index follows a similar methodology, where  monthly streamflow is fitted to an appropriate 

distribution, and then the observed occurrence  probabilities are transformed into z-scores.  

Non-parametric drought indices offer a flexible alternative to traditional parametric indices  by not 

assuming a specific statistical distribution for the data. These indices rely on empirical  probabilities 

(from plotting position formulas) to evaluate the conditions. This approach is  particularly 

advantageous in regions where climatic data do not fit common parametric  distributions, allowing 

for more accurate and region-specific drought assessments.  Additionally, non-parametric indices 

can adapt to varying climatic conditions, making them  robust tools for global drought monitoring 

and management in the context of climate change.  
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In our study we developed a nonparametric Standardized Precipitation Index (SPI) and  

nonparametric Standardized Streamflow Index (SSFI) from the corresponding observed  

precipitation and streamflow for a watershed. Additionally, both SPI and SSI can be calculated  at 

different accumulation scales, where the observational values are converted to an n-month  running 

sum/average. Accumulation scales are used to make the drought index more relatable  to ground-

based phenomena, with more minor accumulation scales (< 3 months) important  for agricultural 

drought and larger scales (> 12 months) for monitoring groundwater droughts.  The following steps 

are used when calculating the non-parametric drought indices from the  observations (X).  

1. Apply the rolling window for accumulating the observations  

2. Group data by climatology, i..e. months   

3. Rank(r) the precipitation (or runoff) values X1, X3 ,X3 , …, Xn in ascending order. 4. 

Calculate the empirical cumulative probability P(X) based on the rank.  

𝑃(𝑋)  =  𝑟/𝑛 +  1  

5. Transform P(X) to the standard normal distribution to get the Standardized Index (SI):  

𝑆𝐼 = 𝜙−1(𝑃(𝑋)) 

Where 𝜙−1 is the inverse cumulative distribution (CDF) of standard normal distribution.  

2.2. Bivariate dependence of SPI and SSI  

Recognizing the interconnected hydrological processes governing streamflow/runoff  generated 

from precipitation and modeling their dependence is necessary. While other forms  of 

multidimensional analysis, like multivariate normal distribution, could be used, they  assume that 

marginal follows specific distributions. To resolve this, the use of a copula is  necessary, which can 

model the dependence between the variables even if they have varying  marginal behavior (Sklar, 

1998).  

Copulas are generally classified into four classes: Archimedean, extreme value, elliptical, and  other 

miscellaneous classes. In this study, bivariate classes of elliptical copula (Gaussian and  Student's t) 

and eight from the Archimedean class (Clayton, Gumbel, Frank, Joe, BB1, BB6,  BB7, and BB8) 

were considered. BB1, BB6, BB7, and BB8 are from the two-parameter families.  The two-

parameter families of copula can be instrumental in capturing more than one type of  dependence, 

e.g., one parameter for the upper tail and lower tail dependence each, or one  parameter for 

concordance while the other captures the lower tail dependence [Joe, 1997].  

Since copula takes its input [0, 1], therefore the calculated SPI and SSI are to be converted into  a 

uniform distribution. This is done by calculating Empirical Cumulative Distribution (ECDF) by  

taking the whole time series.  

Pseudo Maximum Likelihood Estimation is used to estimate the parameters of each family of  

copula, and the best copula is selected based on the least Akaike Information Criteria.  

This way, we find linkages between different scales of drought index: 1 and 3 months. Hence  a 
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best fit copula for each station based on its own SSI and a common average SPI 1 and 3 is  

found. Then we check what is the probability of observing hydrological drought given that  

meteorological drought has occurred P(SSFI<= -1| SPI = -1) and what is the probability of  

observing both hydrological and meteorological drought at once P(SSFI<= -1, SPI<= -1)?  

3. Results and Discussion   

3.1 Drought index development and temporal variations  

The estimated standardized dataset includes normalized values for each site, with columns  

representing stations, making it easy to visualize and summarize. Figure 2 indicates the time  series 

of the 3, 6, and 12-month SPI for an averaged observation over the study area. Figure 3  shows the 

3, 6, and 12-month SRI estimated over all stations in the study area. Seasonal  droughts are captured 

using the 3-month SPI and SRI, while intra-annual and annual events  are highlighted in the 6 - and 

12-month indicators, respectively.   



                                       
WATERSOFTHACK 2024 

 

 
 

 11 

Figure 2: Standardized Precipitation Index (SPI) time series for various time scales averaged  over the study 
area 
Periods of significant precipitation deficit include 1999/2000, 2008, 2013, and 2017, which are  

captured using the 12-month SPI. These periods represent SPI < -1, which indicates severe  

meteorological droughts, according to McKee et al., 1993. The frequency distribution of SPI  

showed that 15% of the data lies between SPI of -1.0 and -0.5, 9% between -1.5 and -1.0, and  6% 

between -2.0 and -1.5. The majority lay within the mild (18%) to moderate (15%) drought  range.  
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Figure 3: Standardized Streamflow Index (SSI) time series for various time scales in the study   

area (gray lines show all stations while the solid line shows selected stations along the main  

river)  

SRI values, which represent standardized streamflow or discharge, show that periods  2002/03, 

2008/09, 2012/13, and 2017/18 had significant deficits (SRI < -1), as represented in  Figure 3. The 

frequency distribution of SSI also showed similar results for the SRI-12 time  series. 15.5% of the 

data lies in the range -1.0 and -0.5, 9.3% between -1.5 and -1.0, and 6.2%  between -2.0 and -1.5, 

revealing a good agreement between the standardized rainfall and  streamflow distributions. As 

these discharge monitoring stations are positioned along various  points in the primary and adjoining 

streams, they have a range of contributing areas that may  be influenced by multiple 

agrometeorological as well as anthropogenic factors. This may  

reduce the linear correlation between precipitation and streamflow and requires an  evaluation of 

each station for a nuanced assessment of correlation and synchroneity.   

3.2 Bivariate Copula selection  

Various Elliptical and Archmedian families of copula were tested for fitting SPI and SSI time  

series. Two sets of results are presented here by varying the accumulation scale of the  modeled 

Standardized Indices (SPI/SSI): a one-month and a three-month scale. The spatial distribution of 

results obtained includes the best-fit copula model, the joint  probability of occurrence, and the 

conditional probability of occurrence.  

Looking at the family of copula selected for both one month and three months, most of the  families 

exhibit higher upper tail dependence apart from Frank and Gaussian, which don’t  exhibit upper or 

lower tail dependence and are more suitable for capturing moderate  dependencies without 

significant tail dependence. In contrast, most BB families, gumbel, joe,  and student’s t exhibit either 

both tail dependence or higher upper tail dependence. High upper tail dependence structures mean 

higher correlation at upper values of variables and are  typically seen in fast-responding catchments, 

where higher slopes and the absence of  abstractions.  
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Figure 4: Best family of Copula identified for catchments for a) SPI1-SSI1 and b) SPI3-SSI3 4.3 
Joint probability of occurrence  

For both 1-month and 3-month scenarios, the joint probability of occurrence of  meteorological 

drought and hydrological drought is similar statistically but low compared to  conditional 

probability. Furthermore, it increases as we move downstream, which makes  sense because 

streamflow downstream is related to precipitation due to the higher catchment  area. 
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Figure 5: Joint probability of occurrence of SPI <=-1 & SSI <=-1 identified for catchments for  

a) SPI1-SSI1 and b) SPI3-SSI3  
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3.4 Conditional Probability of Occurrence 

Figure 6: Conditional probability of occurrence of (SSI <=-1 | SSI =-1) for catchments for a)  
SPI1-SSI1 and b) SPI3-SSI3  

While the joint probability of occurrence was found particularly low, the conditional  probability 

signifying the occurrence of a moderate to severe streamflow drought, provided  precipitation 

drought has already occurred, shows higher values in both 1 and 3-month accumulation scales of 

the indices. Similar to joint probabilities, increasing conditional  probabilities are observed in the 

lower sections of ACT watershed.  

4 Conclusions   

This study provides an analysis of drought propagation using copula models. It focuses on the  

simultaneous occurrence of meteorological and hydrological droughts as well as the  conditional 

probability that a hydrological drought occurs given a meteorological drought. By  leveraging the 

HydroLang infrastructure, we developed a web-based tool that extracts  precipitation and discharge 

data from large-scale services such as USGS that were used to  estimate drought indices.  

Our findings highlight the importance of understanding how precipitation deficits  (meteorological 

droughts) translate into streamflow deficits (hydrological droughts), as past  analyses have indicated 

the lack of clear-cut thresholds determining when meteorological  droughts transition into 

hydrological droughts. Distinct periods of drought events with notable  overlap between severe 

meteorological and hydrological droughts were observed. The use of  bivariate copulas allowed us 

to model the dependence between precipitation and streamflow  deficits and captured the nuanced 

interaction between these variables over 1- and 3-month time scales. Most downstream stations 

showed a greater probability of a hydrologic drought  occurrence as a result of meteorological 

drought occurrence, particularly in the 3-month  analysis, indicating the influence of seasonally - 



                                       
WATERSOFTHACK 2024 

 

 
 

 16 

aggregated rainfall and streamflow. This high  

probability suggests that when one anomaly is observed, the likelihood of occurrence of the  other 

anomaly is also elevated, which can enhance our ability to predict drought conditions  more reliably. 

The incorporation of additional catchment and climate controls such as  elevation, 

evapotranspiration, and landcover can enhance these outputs by explaining the  presence of low-

value conditional probabilities among high-value ones.   

Future studies should consider applying the copula model to a global scale to assess its effectiveness 

in various climatic and hydrological contexts. Additionally, incorporating soil  moisture data into 

the framework could provide a more holistic view of drought impact and  improve predictive 

capabilities.  
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Abstract  

Stream water temperatures (SWT) are crucial indicators of aquatic ecosystem health, which can 

be strongly influenced by climate patterns, disturbance events and anthropogenic factors. 

Understanding the dynamics of SWT variability across different geographical and climatic zones 

is essential for effective water resource management and ecological conservation. The purpose of 

this study is to analyze recent trends in SWT field data across the United States (U.S.) and assess 

the impacts of large-scale climate variability on SWT observations over time. Specifically, the 

study investigates how SWT correlates with major climate indices, including the North Atlantic 

Oscillation (NAO), Atlantic Oscillation (AO), El Niño Southern Oscillation (ENSO), and Pacific 

North American pattern (PNA). Examining field data from the U.S. Geological Survey’s 

National Water Information System Database, we ultimately identified 883 stream gaging 

stations with 10 or more years of daily SWT observations for further analysis. 

We first conduct a spatial-temporal examination of SWT variability as a function of aridity 

index, stream order and land cover/land use. We use a Mann-Kendall nonparametric trend test to 

evaluate the existence of increasing or decreasing trends. Analysis of SWT trends finds that 70% 

of USGS monitored stream gage stations across the U.S. have experienced a statistically 

significant increase (at the 5% level) in daily SWT. Of the hydrologic unit codes (HUC) 

considered, the South Atlantic-Gulf region experienced the most prominent increasing SWT 

trends, while the Great Basin region experienced the least. In terms of aridity index, nearly 75% 

of stations considered to be in “humid” areas have experienced increasing trends in SWT, 

followed by semiarid station areas, followed by subhumid stations and arid stations. Finally, we 

consider how global climatic oscillations (NAO, AMO, ENSO, PNA) can influence local SWT 

conditions. By understanding the linkage between global climate patterns and regional water 

temperatures, policymakers and environmental managers can better expect changes and develop 

strategies to mitigate adverse effects on freshwater habitats and biodiversity. 

Keywords: stream temperature, thermal trend analysis, climate change, global warming 

1. Introduction  

Stream water temperature (SWT) is an important driver of ecosystem health, and societal 

function. As part of the hydrologic cycle, SWT regulates dissolved oxygen concentrations, 

biochemical oxygen demand rates, and chemical toxicities (Patra et al., 2015), which ultimately 

have a strong influence on the health, survival, and distribution of freshwater fish, amphibians 

and other riparian species (Ward, 1998; Rogers et al., 2020). SWT is also a key indicator of 

cumulative anthropogenic impacts on freshwater systems (Risley et al., 2010). For example, 

SWT observations and trend analysis can show the extent of impacts of anthropogenic stream 

flow regulation such as the impacts of dam structures, channelization or stream re-routing 
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(Risley et al., 2010; Fuller et al., 2023). SWT analysis can also be a harbinger of awareness of 

the impacts of disturbance (i.e., riparian alteration, forest management, wildfire) and large-scale 

climate change impacts (Barbarossa et al., 2021; Johnson and Jones, 2000).  

Over the last century, technological advances have improved our ability to measure SWT in a 

dependable manner across the United States (Caissie et al., 1998; Benyahya et al., 2007). In 

recent decades, the increase for SWT data available has also made data analysis of stream 

temperature possible and strengthened our scientific ability to look for trends (Maheu et al., 

2016; Siegel et al., 2023). As a result, the scientific community has increasingly moved towards 

data accessibility, an example being the United States Geological Survey (USGS) National Water 

Dashboard, an interactive web tool that any user can use to find extensive site-specific 

hydrological data from thousands of stream gages across the United States (Miller et al., 2022). 

Currently, the USGS National Water Dashboard (here, ‘USGS Water Dashboard’) visualizes 

changes in certain hydrological parameters expertly, such as showing color variations for 

increases or decreases in stream discharge (water flow rate) over time. Addressing such 

variations in real time with color and comparative information on trends can be a useful tool for 

stakeholders needing a rapid, in-context understanding of real-time trends prior to making 

critical decisions such as dam water releases, agricultural effluent or industrial wastewater flow 

rate allowances. Unfortunately, the USGS Water Dashboard does not extend such visualizations 

to other hydrologic parameters of concern, particularly stream temperature, the focus of our 

project.  

Unfortunately, the USGS Water Dashboard does not extend such visualizations to other 

important hydrologic parameters, in particular stream temperature, which is an important 

knowledge gap that needs addressing to enhance stakeholders’ ability to access and data and 

understand observational variability. Our project objective is thus two-fold: 1) to create an 

interactive web dashboard of all stream gaging stations with 10+ years of stream temperature 

observations for the United States, and 2) to analyze the 10+ years of stream temperature 

observations for overall trends in SWT variability over time, and determine possible influences 

on SWT variability by (a) hydrologic unit code (HUC), (b) aridity, and (c) stream order. The 

significance of this work is in its never-before-seen ability to organize national stream 

temperature data in a user-friendly manner to further support a comprehensive view of SWT 

variability across the United States, while also using the data to discover long-term trends that 

were previously not known in a larger spatial-temporal context. 

2. Methodology  

2.1 Stream Water Temperature Data Stream Water Temperature (SWT) Data  

The United States Geological Survey (USGS) operates a comprehensive network of stream water 

temperature monitoring stations across the nation. These stations provide critical data for 

understanding temporal and spatial variations in stream water temperatures, which are essential 

for water resource management and ecological studies. The locations of these monitoring stations 

were sourced from the USGS National Water Information System Database (USGS, 2017), 

which is currently accessible through the USGS National Water Dashboard 

(https://dashboard.waterdata.usgs.gov). 

While USGS provides several tools for retrieving streamflow data, such as water level and 

discharge, through its APIs, there was no direct facility available to download large-scale water 

https://dashboard.waterdata.usgs.gov/
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temperature datasets. To address this gap, we developed a Python-based automated code that 

facilitates the retrieval of SWT data across all USGS gauging stations for extended periods. This 

automation aimed to support large-scale analyses without the limitations imposed by manual data 

retrieval processes. 

2.2 Automated Data Retrieval Code 

The core of our methodology involves an automated data retrieval script written in Python. The 

script interacts directly with the USGS web services to fetch daily water temperature data for a 

specified range of dates. An overview of the script's functionality is summarized in Table 1. 

Table 1. Key functionalities and the SWT data retrieval code 

Functionality Description 

 

Initialization 

The script begins by reading a list of station numbers from a CSV file. 

These station numbers are formatted to match USGS requirements (e.g., 

ensuring eight-digit uniformity). 

Data Request For each station, the script constructs a URL to query the USGS API, 

specifying the water temperature parameter code ('00010'). It requests data 

between October 1, 1980, and September 30, 2023, or based on the user 

selected time period. 

Data Retrieval 

and Storage 

Upon receiving a successful response, the script parses the JSON data and 

stores it in a directory named 'Data', creating a separate JSON file for each 

station. If the data retrieval fails (e.g., due to server issues or an invalid 

station number), the script logs an error message. 

Automation and 

Execution 

The entire process is automated allowing for periodic or on demand 

execution, such that data is up-to-date for ongoing research needs. 

 

To foster collaboration and ensure transparency in our research, the station codes used in this 

study, along with the automated data retrieval script, will be made available as a HydroShare 

resource. This initiative aims to provide the scientific community with the tools necessary to 

replicate our study, validate our findings, and conduct further research on stream water 

temperatures. 

2.3 Data Processing and Quality Control 

The robustness of our findings hinges on the reliability and consistency of the SWT data 

obtained from the USGS stations. To ensure the integrity of our analysis, a comprehensive data 

preprocessing and curation step was implemented. This step involved the detailed examination of 

each station's data for completeness and accuracy. 

The automated data retrieval code, described previously, serves as the foundation for this 

process. Following the initial data retrieval, a data investigation process was employed to parse 

and assess the quality of the water temperature records from each station. This process performs 

several tasks.  

The preprocessing of SWT data involves a series of steps that transform raw measurements into a 

format suitable for detailed analysis. Initially, the raw JSON data from each USGS station file is 

meticulously converted into a structured panda DataFrame. During this conversion process, date 

entries are parsed into a datetime format to facilitate chronological analysis, while water 
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temperature values are converted to numeric types, with non-numeric entries being handled 

gracefully to ensure data integrity. 

Following the conversion, the completeness of the data is assessed by calculating the total 

number of days covered by the records and comparing this to the actual count of data entries 

logged. This comparison is crucial as it highlights any significant gaps in the data that could 

potentially skew the analysis of trends and variability. To further ensure the robustness of the 

dataset, a statistical summary that includes the minimum, maximum, median, and mean 

temperatures is computed. These statistics provide an initial quality check and a snapshot of the 

range of conditions experienced at each station, facilitating preliminary interpretations and 

comparisons. The final stage of preprocessing involves applying strict data retention criteria, 

ensuring that only stations with at least ten years of daily records are included in the analysis. 

This criterion is essential for the reliable detection of long-term trends and variability within the 

dataset. The output from this preprocessing includes a comprehensive summary of each station's 

data quality metrics. These metrics are instrumental in determining the suitability of the data for 

inclusion in our trend analysis, ensuring that the dataset used for further study represents a 

reliable and scientifically robust basis for evaluating the impacts of various environmental 

factors on stream water temperatures. 

 
Figure 1. Distribution of USGS SWT monitoring stations across major hydrological units from 

the East Coast of the United States to the West coast. 

Of the 2607 active USGS stations initially considered, 883 stations met the criteria discussed 

above for long-term data completeness and reliability. This selection was based on the 

requirement that each station have at least ten years of daily records, ensuring robust trend 

analysis and change point detection capabilities. To illustrate the geographical distribution and 

hydrological context of the selected stations, Figure 1 provides the count of the 883 stations, 

categorized by their respective Hydrological Unit Codes (HUCs) organized from East Coast to 

West Coast. We note that the South Atlantic-Gulf region, Ohio region, and Mid-Atlantic regions 

on the East Coast have more stream gaging stations than the West Coast regions, i.e. California 

and Pacific Northwest. 
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2.4 Auxiliary Data 

To comprehensively assess the impacts of climatic, hydrological, and anthropogenic factors on 

stream water temperature variability, we obtained several datasets reflecting these elements. 

These datasets are essential for understanding the multifaceted influences on streamflow and 

water temperature regimes. The following summary (Table 2) provides an overview of the data 

used in our analysis. 

Table 2. Summary of data type obtained, source, description, and time frame considered. 

Data type Source Description/Link Time Frame 

Global 

climate 

oscillations 

NOAA Physical 

Sciences Laboratory 

NAO, AO, ENSO, and PNA time series. 

https://psl.noaa.gov/data/climateindices/list/ 

1980-2023 

LC/LU data USGS National Land 

Cover Database 

https://www.mrlc.gov/data 2021 

Aridity index Abdelkader et al. 

(2023) 

Aridity index was calculated as a function of 

the mean annual precipitation and mean 

annual potential evapotranspiration. 

1979-2020 

Stream order National 

Hydrography Dataset 

Plus 

https://www.epa.gov/waterdata/nhdplus-

national-hydrography-dataset-plus 

- 

Hydrologic 

Unit Codes 

(HUC-02) 

USGS Watershed 

Boundary Dataset 

(WBD) 

https://www.usgs.gov/national-

hydrography/watershed-boundary-dataset 

- 

 

2.5 Variability Analysis 

In this study, the assessment of variability in SWT data series is primarily performed through 

trend analysis, using the Mann-Kendall (MK) test to detect significant monotonic trends 

(Kendall, 1975). The MK test is a robust non-parametric statistical method widely used for 

analyzing time series data where the sequence of values shows either an increasing, decreasing, 

or no trend over time. This method does not require the data to conform to any distribution and is 

insensitive to abrupt breaks due to inhomogeneous time series data. Therefore, it is especially 

suitable for environmental studies where data may be non-normal. (Helsel and Hirsch, 2002). 

The test evaluates the strength and direction of a trend by comparing the relative magnitudes of 

sample data points. The null hypothesis of the MK test states that there is no trend, which is 

rejected if the test statistics exceeded the significance level value, where:  

 
The null (H0) hypothesis expresses the existence of no trend while the (H1) alternative hypothesis 

highlights a significant rising or declining trend in the data. Based on a 5% significance level, 

where the p-value < 0.05, then the alternative hypothesis (H1) is accepted, thereby signifying the 

presence of a trend in the data. If the p-value > 0.05, then the null hypothesis (H0) is accepted, 

thereby suggesting the absence of a trend in the data. 
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The test has been applied in hydrologic studies to analyze temporal changes in environmental 

records, such as examining changes in daily maximum precipitation (Westra et al., 2013). A 

strength of the Mann-Kendall test for trend is that it is not biased by any transformations (i.e., 

logarithmic, exponential) applied to the Y-variable, making it suitable for studies of many similar 

datasets, such as 10+ year records of stream water temperature (Helsel and Hirsch, 2002), as is 

the case for this study. 

To complement the trend significance testing with the Mann-Kendall test, Sen’s Slope 

Estimator is employed to quantify the magnitude of the observed trend. The Sen’s slope test is a 

robust, non-parametric test used to quantify the magnitude of the observed trends (Gocic and 

Trajkovic, 2013). The Sen’s Slope test is a non-parametric method used to estimate the true slope 

(change per unit time) of a dataset, providing a robust measure against outliers and non-normal 

data distributions. For a set of pairs (i, Xi), where Xi is change over time, Sen’s slope can be 

defined as: 

 
Where the d is the slope, X denotes the variable, n is the number of data, and I, j are indices. 

From this equation, Sen’s slope is calculated as the median from all the computed slopes, where 

b = median dk. The intercepts, at, are computed for timestep, t, using the following equation: 

 
And the corresponding intercept is as well the median of all intercepts. For our analysis of SWT, 

the statistical tests were applied to over ten years of daily SWT data collected from the USGS 

gauging stations. This approach allowed us to systematically identify and quantify trends across 

various geographical and climatic zones within the United States. By detecting and measuring 

the rates of change in SWT, we can infer potential impacts linked to climatic oscillations, land 

use changes, and other anthropogenic activities, thus providing valuable insights for 

environmental management and policymaking. 

The Pettitt test (Pettitt, 1979) is a nonparametric test that identifies a point at which the values in 

a series with continuous data change, called a change-point detection. Such an approach can be 

applied to hydrological or climate series datasets, where the null hypothesis (H0) states that the T 

(time) variables follow one or more distributions showing no change, i.e., have the same location 

parameter compared to the alternative hypothesis (H1) which states that a change point exists. 

The Pettitt test is defined as: 

 
The change-point of the data series is located at KT, provided a significant statistic. The 

significance probability of KT is determined for the p-value ≤ 0.05, where: 
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The method is advantageous in identifying shifts in the median without presupposing a specific 

distribution for the data. The test operates by comparing data ranks across potential change 

points and calculating a statistic Ut, which is assessed against critical values from the asymptotic 

distribution. If the computed Ut exceeded the critical threshold, a change point is considered 

statistically significant. This method is particularly valuable for detecting abrupt changes in 

hydrological time series data. 

3. Results and Discussion  

3.1 SWT Variability Dashboard 

In this study, we developed the SWT Variability Dashboard, a comprehensive web-based 

platform designed to advance the understanding of stream water temperature changes across the 

United States. This platform is structured around three key portals, each tailored to meet specific 

analytical and data access needs (Figure 2). 

The first portal facilitates a dynamic exploration of recent trends in SWT. It features an 

interactive map displaying sites with increasing, decreasing, and stable SWT trends. This portal 

integrates additional geographic layers such as aridity zones and locations of significant dams—

those exceeding 100 feet in height—providing a multi-dimensional perspective on the 

environmental and anthropogenic factors influencing SWT. 

The second portal is dedicated to the retrieval of stream temperature data, enabling users to 

directly access and download data. This functionality supports a broad spectrum of users, from 

researchers conducting complex analyses to practitioners requiring immediate data for 

environmental management applications. 

The third portal offers detailed information about active USGS SWT stations, allowing users to 

access basic statistical data for each station and related hydraulic features, such as nearby dams. 

This information is crucial for understanding the local conditions that might influence water 

temperatures at each monitoring site. 

Significantly, the second and third portals are integrated with HydroShare, hosted as resources 

that direct users to CUAHSI’s JupyterHub. This integration facilitates further data manipulation 

and analysis within a collaborative environment, enhancing the utility of the dashboard for 

comprehensive scientific research. 
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Figure 2. Interface of the SWT variability across the United States web portal 

Figure 2 provides a visual representation of the dashboard's user interface, highlighting its 

functionality and user-friendly design. Overall, the SWT Variability Dashboard represents a 

significant advancement in the tools available for researchers, policymakers, and environmental 

managers, offering an integrated platform to analyze, visualize, and respond to changes in stream 

water temperatures effectively. Users can access the platform using the following URL: 

https://softhack-mabdelka1-c776225f2bb346fd6c8bc81dd0be3fd85f94edb48ba3.gitlab.io/  

https://softhack-mabdelka1-c776225f2bb346fd6c8bc81dd0be3fd85f94edb48ba3.gitlab.io/
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3.2 SWT variability by HUC-02 

Figure 3. Box plot showing stream temperature observations minimum (blue), maximum 

(orange) and median (gray) values in order of HUC-02 region, organized from East Coast to 

West Coast. 

 

Figure 4 organizes stream water temperature minimum, maximum and median statistics in 

box plot form by HUC-02 region from East Coast (New England region) to West Coast (California 

region). Overall, there does not appear to be an increasing or decreasing trend for stream gaging 

stations, by HUC-02 region. This is not surprising as HUC-02 regions encompass varying spatial 

scales that can add natural nonlinearity in the form elevation variability, climate variability, 

topographic variability, and aridity variability to data analysis. In contrast to the 

minimum/maximum/median box plots of stream water temperature, figure 3 shows a proportional 

analysis of trend types by HUC-02 region. Of interest are the trends showing increasing stream 

water temperatures across stream gaging stations, which appear to dominate across all HUC-02 

regions. Specifically, the percentage of stream gaging stations depicting an increasing trend in 

SWT range from the Great Basin region showing ~33% of stations with increasing SWT over the 

10+ year dataset, to the South-Atlantic Gulf region, which shows over ~90% of all stations 

experiencing an increasing trend in SWT. In contrast, decreasing trends in SWT range from ~18% 

(California and Missouri regions) to 0% (Rio Grande and Texas-Gulf regions). The percentage of 

stations with no discernible trend in SWT ranged from ~10% (Ohio region) to nearly ~60% (Great 

Basin region).   
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Figure 4. Bar plot shows proportional analysis of trend types, i.e., decreasing (blue), no trend 

(gray) and increasing (orange) by HUC-02 region, organized from East Coast to West Coast. 

 

3.3 SWT Trends by Aridity Index 

Figure 5 organizes stream water temperature minimum, maximum and median statistics in box 

plot form by aridity index. The aridity index represents the average amount of water available in 

the soil and is physically defined as the ratio between mean annual precipitation of an area and 

the mean annual evapotranspiration (Arora, 2002). Arid soils are thus considered soils with the 

least amount of water available in the soil (on average), followed by semiarid soils, subhumid 

soils, and finally humid soils. Figure 4 shows the stations considered semiarid and humid as 

having the greatest variability in terms of maximum stream water temperature. Of the trend types 

shown, the decreasing trend is least variable across the four aridity zones. 

The stream gage stations categorized as humid show the greatest variability for minimum, 

median, and maximum SWT, which is physically sensible because humid areas tend to be less 

water limited, allowing liquid water to reach the highest and lowest range of temperatures. 

Interestingly, stream gage stations classified as semiarid have the second highest variability. We 

would initially expect that subhumid stations would have the second highest variability due to 

being less water limited than semiarid regions. Finally, stations classified as arid had the least 

variability, which is physically intuitive due to such areas generally being severely water limited. 
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Figure 5. Box plot showing stream water temperature minimum (blue), median (gray), and 

maximum (orange) values in order of aridity index, from arid to humid regions. 

 

In contrast to the minimum/maximum/median box plots of stream water temperature, figure 6 

shows a proportional analysis of trend types by aridity index, by percentage of stations 

considered. Of note, increasing trends in stream water temperature are most dominant for 

stations defined as humid, with nearly 75% of stations considered to be in humid areas showed 

an increasing trend. Stations considered arid show the lowest percentage of increasing trends 

~25%, followed by subhumid stations ~35% and semiarid stations ~40%. In contrast, decreasing 

trends in SWT range from less than 5% (arid) to ~8% (semiarid). The percentage of stations with 

no discernible trend in SWT ranged from ~10% (subhumid) to nearly ~25% (semiarid). 

Physically, it is understandable that the stations considered arid would have the lowest increasing 

trend as arid regions are generally water-limited, thereby impeding daily SWT variability 

(especially in the hot summer months), as there is likely little to no flowing surface water to be 

measured. At the same time, the higher percentage of increasing trends being experienced by 

semiarid regions compared to subhumid regions is interesting given that semiarid regions are 

also water-limited (though not as intensely as arid regions) relative to subhumid regions. We 

posit that this may be due to a greater presence of semiarid stations being at higher elevations, 

i.e., located in the Rocky Mountains or Cascade Mountains, where spatially close gages (that 

measure SWT) separated only by elevation may experience larger swings between colder and 

warmer temperatures, especially where affected by atmospheric rivers or other climate 

phenomenon, as was the case for small watersheds in the Sierra Nevada Mountains of California 

(Marshall et al., 2024).  
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Figure 6. Bar plot shows proportional analysis of trend types, i.e., decreasing (blue), no trend 

(gray) and increasing (orange) by aridity index, organized from arid to humid. 

 

3.4 SWT Trends by Stream Order 

Figure 7 presents SWT statistics—minimum, median, and maximum—organized by stream 

order, distinguishing smaller-order streams as "lower" and larger-order streams as "higher." 

Surprisingly, the analysis reveals no significant trends in SWT variability across different stream 

orders. This outcome contradicts common hydrological assumptions. Typically, smaller streams, 

with less water volume, exhibit greater temperature fluctuations due to their limited heat 

capacity, leading to pronounced temperature swings. Conversely, larger streams, benefiting from 

greater water volumes, are expected to have more stable temperatures due to their enhanced heat 

buffering capacity (Leach et al., 2023). 

The lack of observable variation in our continental-scale analysis suggests that the thermal 

dynamics of streams may not conform to simplified expectations based on stream order alone. 

This insight points to the potential oversimplification of complex hydrological and thermal 

interactions within stream networks at large scales. Consequently, there is a clear need for more 

detailed monitoring networks that cover both tributaries and main streams. Such networks would 

enhance our ability to detect localized changes and understand the nuances of thermal variability. 

Moreover, this finding underscores the importance of conducting more focused watershed-scale 

analyses. While continental-scale assessments provide broad overviews, they may mask critical 

subtleties and localized phenomena essential for effective water resource management and 

ecological conservation. Detailed analyses at the watershed scale could reveal significant 

variability and trends that continental assessments might overlook, offering more precise insights 

into the factors driving SWT variability. This approach would also facilitate more targeted 
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management strategies, tailored to the specific thermal and hydrological characteristics of 

individual watersheds.  

Figure 7. Box plot showing stream water temperature minimum (blue), median (gray), and 

maximum (orange) values organized by stream order, where a stream order of 1 indicates low-

order (i.e., small) streams. Stream orders of > 4 indicate much larger streams (also called rivers) 

such as the Missouri river (7th order). 

3.5 Link with climate oscillations 

To explore the potential influence of large-scale climate patterns on stream water temperatures, 

our analysis focused on the correlation between maximum recorded SWT and the moving 

average over a three-month window of key climate indices—specifically ENSO, PNA, NAO, 

and AO. We selected three different stations located in the western United States, each exhibiting 

distinct trend patterns: increasing, decreasing, and no significant trend, all within the same 

Hydrological Unit. 

Figure 8 illustrates the seasonal patterns in the relationship between maximum recorded SWT 

and selected climatic indices. Seasons marked with an asterisk denote the period preceding the 

water year of the recorded maximum SWT. Relationships extending outside the shaded region 

demonstrate significance at the 10% confidence level, with the highest correlation observed with 

the PNA for the October-November-December series. This suggests that Pacific patterns, 

particularly those associated with the PNA, significantly impact SWT variability. 

The Pacific North American (PNA) pattern, known for causing strong fluctuations in the strength 

and location of the East Asian jet stream, plays a crucial role. During its positive phase, the PNA 

is associated with an enhanced East Asian jet stream and an eastward shift in the jet exit region 

toward the western United States, typically leading to increased precipitation rates and decreased 

SWT in these areas. Conversely, a negative phase tends to be associated with Pacific cold 

episodes which can increase SWT. 

Our objective was to determine if, regardless of the local temperature trend, there was a 

consistent climatic signal affecting annual maximum SWT. The results were enlightening: we 
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found that a lagged summer signal from the PNA pattern, coupled with autumn signals from the 

North Atlantic Oscillation (NAO) and Arctic Oscillation (AO), has the potential to serve as 

predictors for the annual maximum stream temperatures. 

This linkage suggests that despite localized temperature trends, certain large-scale climate 

indices significantly impact SWT, offering valuable insights for predicting changes in stream 

temperatures based on global climate dynamics. The obtained negative correlation is expected 

given the influence of Pacific patterns on SWT variability, affirming the predictive power of 

these climatic indices. 

 

 
Figure 8. Seasonal patterns in the relationship between maximum recorded SWT and selected 

climatic indices. Seasons marked with an asterisk denote the period preceding the water year of 

the recorded maximum SWT. Relationships extending outside the shaded region demonstrate 

significance at the 10% confidence level. 

4 Conclusions  

Recent technological advances have improved our ability to measure SWT in a consistent 

manner across the U.S. (Caissie et al., 1998; Benyahya et al., 2007). The increase of available 

SWT data has also made data analysis of SWT possible and strengthened our ability as a 

scientific community to visually display data for public-use as well as identify physical patterns 

from the data in near real-time (Maheu et al., 2016; Siegel et al., 2023). To further our progress 

in data analysis of stream temperature, we introduce an interactive website dashboard for daily 

SWT, which to our knowledge was not previously in existence.  

As our first project objective, the purpose of the web dashboard was to highlight observational 

variations in real time with color and comparative information on trends can be a useful tool for 

stakeholders needing a rapid, in-context understanding of real-time trends prior to making 

critical decisions such as dam water releases, agricultural effluent or industrial wastewater flow 

rate allowances. The second objective of the project was to analyze the 10+ years of stream 
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temperature observations for overall trends in SWT variability over time and determine possible 

influences on SWT variability by (a) HUC classification, (b) aridity index, and (c) stream order. 

In addressing the second objective, we identified increasing trends in SWT across the United 

States. By HUC classification, we found that increasing trends in SWT range from being present 

in 30% of stations (Great Basin region) to 90% of stations (South Atlantic-Gulf region). In terms 

of aridity index, we found that nearly ~75% of stations classified as being in humid areas 

experienced increasing trends in SWT variability over time, while ~25% of arid stations 

experienced increasing trends for SWT. In terms of stream order, there were no strong 

discernable trends in SWT variability over time, which is most likely due to data limitations, 

wherein smaller order streams have less representation in datasets relative to larger streams. 

Overall, the significance of this work is in its novel ability to organize national SWT data in a 

user-friendly manner to further support a comprehensive view of SWT variability across the 

United States, while also using the data to discover long-term trends that were previously not 

known in a larger spatial-temporal context. Possible future analysis will consider the inclusion of 

dams, non-point sources of pollution, and more in-depth examination on the influence of stream 

order on stream water temperature variability over time.   
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Appendix 

Table A1. HUC-2 regions with their respective total stream gaging stations, and separation of 

stations by aridity index. See figure A1 for a United States map showing the HUC-2 regions. 
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Figure A1. Map of the United States showing the HUC-02 regions directly obtained from the 

following U.S. Geological Survey web address: https://water.usgs.gov/GIS/regions.html.  
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Abstract  

Turbidity is a crucial physical parameter for assessing water quality, yet open-source datasets 

containing turbidity data are scarce. Moreover, the process of identifying water stations with 

turbidity data, extracting the data, and formatting the data into a usable and interpretable form is 

often time-consuming and labor-intensive. This creates a significant obstacle, resulting in a time 

lag between the identification of stream quality issues and the implementation of protective 

measures for water quality. To address this issue, our team developed a turbidity dashboard using 

Hydrolang that presents real-time turbidity data from United States Geological Survey (USGS) 

stream gauges using Portland Oregon as our point of interest. The dashboard retrieves data from 

the USGS instantaneous values data repository, to create a visual representation of the data, 

enabling faster detection of water quality issues and more timely interventions to safeguard water 

ways. Additionally, the dashboard uses data from USGS to estimate current temporal trends and 

develop a forecasting model using a simple univariate time series xgboost model which helps to 

identify and predict future turbidity issues. This paper describes the process of designing and 

implementing the data visualization dashboard, highlighting the potential of the dashboard to 

streamline water quality monitoring and facilitate access to real-time updates of turbidity data 

reported by the USGS. Initial user testing indicates that the dashboard significantly reduces the 

time required to access and visualize turbidity data. As future work one can expand upon the 

dashboards functions, including the addition of other water quality parameters. 

Keywords: Turbidity, Water quality, Dashboard, HydroLang, Data visualization 
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1. Introduction  

 

Water is considered one of the most important resources on earth, essential for all forms of life.1,2 

However, as human population and urbanization continue to rise, so do water use and water 

pollution, placing increasing pressure on water quality. Water quality encompasses the physical, 

chemical, and biological conditions of water relative to its intended use or purpose.3 Various 

parameters are used to assess water quality, with turbidity being a key physical indicator.3  

Turbidity measures the cloudiness of water caused by suspended particles.3,4,5 More specifically, 

turbidity is measured by using a turbidimeter, a device that passes light through water and detects 

the amount of light that is reflected back to the sensor.4,5 Turbidity is particularly important to 

aquatic life as high turbidity can lead to warmer water temperatures, decreased dissolved oxygen 

levels, and reduced food availability.3 Additionally, suspended particles can clog the gills of fish, 

further threatening aquatic ecosystems.3  

Turbidity measurements can also provide valuable insights into other water quality parameters and 

help identify pollution sources.6 For example, Meyer et al., (2019) observed a strong correlation 

between turbidity levels and total phosphorus concentrations at the river Biles in Germany. When 

turbidity levels increased, the total phosphorus levels also increased.6 Meyer et al., (2019) 

concluded that the increase in turbidity and total phosphorus was caused by agricultural runoff 

from nearby farmlands. This is just one example that demonstrates how turbidity data, when 

analyzed in conjunction with other water quality parameters, can be a powerful tool for identifying 

non-point source pollution.  

Furthermore, water quality regulatory organizations such as the U.S. Environmental Protection 

Agency (US EPA) identifies turbidity as an indicator for water safety and filtration effectiveness 

(see https://www.epa.gov/ground-water-and-drinking-water/ ). Water utility services must ensure 

that the water meets regulatory standards for turbidity prior to being distributed for industrial & 

domestic water use. Exceeding these thresholds raises water utility concerns and public health 

concerns, as higher turbidity levels could indicate contamination by disease-causing 

microorganisms (e.g. viruses, bacteria). 7  

Given the importance of turbidity as an indicator of water quality, it is crucial to have a reliable 

method for monitoring and analyzing turbidity data as data-driven decision-making is a critical 

aspect of water-quality management.8 This highlights the need for a turbidity dashboard that allows 

users to visualize turbidity patterns effectively. Traditionally, manually accessing comprehensive 

water quality records from multiple stations has been an effort-intensive and time-consuming 

process. However, the development of a turbidity dashboard enables stakeholders to quickly detect 

anomalies, uncover patterns, and respond to potential pollution incidents effectively. Modern 

software tools, such as turbidity dashboards, are essential for optimizing and expediting water 

quality monitoring processes while making data more accessible to the public.9, 10 These tools not 

only streamline the work of regulatory organizations but also enhance the transparency in water 

quality management.  

Problem Statement: Only a limited number of United States Geological Survey (USGS) stations 

record stream turbidity data. Manually, filtering out these stations and accessing their daily data-

https://www.epa.gov/ground-water-and-drinking-water/
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updates is laborious & time consuming. Our team identified the lack of an automated, easy to 

access system dedicated to stream turbidity, that can expedite the above process. 

The objectives of this paper include (1) to develop and design a web-based dashboard that 

integrates instantaneous turbidity data from on-site automated recording equipment   installed at 

multiple USGS sites using Hydrolang, and (2) to create a visualization component in the dashboard 

that allows users to visualize turbidity data, ensuring easy readability and an intuitive user 

interface.  

 

2. Methodology  

2.1 Study Area: 

We focused our study within a 20 mile radius of Portland, Oregon (Fig. 1). Portland Oregon is 

influenced by the Mediterranean climate, experiencing warm and dry summers and cool and rainy 

winters. With climate change on the rise, Portland has experienced more intense weather extremes. 

For example, in 2022 Portland experienced record breaking high temperatures throughout the 

summer and fall months.11 Additionally, in the same year, Portland experienced an intense and 

prolonged period of rainfall, increasing turbidity levels in local watersheds.11 

 

Figure 1: A map showing the study area Portland, Oregon with its USGS stream gauges marked 

by the gray pointers (source:http://www.usgs.gov/)  

2.2 Data Retrieval: 

We created a dashboard that displays current turbidity data from the USGS API, utilizing 

HydroLang for data retrieval and visualization. Figure 2 below displays the work flow of 

developing the dashboard.  

http://www.usgs.gov/
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HydroLang is an open source web-based toolkit for hydrological data retrieval, analysis and 

visualization.12, 13 HydroLang was used to connect to the USGS API and fetch instantaneous  

turbidity data. For turbidity measurements, USGS uses a data sampling method involving 

unfiltered water samples illuminated by monochrome near-infrared LED light with a wavelength 

range of 780-900 nm. The detection angle is set at 90 ± 2.5 degrees. Turbidity levels are recorded 

in Formazin Nephelometric Units (FNU, variable code 63680) and are commonly recorded at a 

fixed interval of 15- to 60-minutes and transmitted to the USGS every hour. The types of data 

retrieved included turbidity values from stations , date and time records, station name and station 

number. Data visualization with HydroLang helped create basic charts and graphs of time-series 

trends in turbidity and display them on an interactive dashboard. It includes several data 

visualization elements such as an interactive map displaying stream gauges recording turbidity 

values, an interactive graph showing the current  trends in turbidity and data tables with basic 

statistics (median values, min & max). Python was used for statistical analysis and trend detection 

along with a simple 1D neural network model for forecasting. Both the Python analysis and the 

forecasting model were integrated into the dashboard. The pipeline (Fig. 2) and the turbidity 

dashboard (Fig. 3) will allow end users to access instantaneous  turbidity data & statistics and 

analyze general turbidity trends. 

2.3 Data cleaning and analysis: 

Due to data gaps at each station when measurements were unavailable, we performed data pre-

processing and cleaning. Large periods with missing data were excluded from the analysis. For 

smaller gaps, we used interpolation within the pandas package for Python, utilizing the 'time' 

parameter to fill NaN values. This method effectively interpolates data at daily and higher 

resolutions. 

We performed a boxplot analysis for monthly and seasonal data, categorizing seasons as follows: 

December-January as winter, March-May as spring, June-August as summer, and September-

November as fall. Additionally, we applied a time series decomposition using an additive model 

to analyze seasonal trends. The results are obtained by first estimating the trend by applying a 

convolution filter to the data. The trend is then removed from the series and the average of this de-

trended series for each period is the returned seasonal component. 

All graphical materials for seasonal trends analysis and forecasting were obtained with Seaborn 

and Matplotlib packages for Python. 
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Figure 2. Diagram illustrating the dashboard design work flow from the data source (USGS) to 

the turbidity dashboard 
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 Figure 3. The dashboard developed for this project visualizes many different statistical 

analyses of turbidity, including a clear visual roadmap of next steps in its development. 

3. Results and Discussion  

3.1 Exploratory Data 

The preliminary results from using the turbidity dashboard (Fig. 3) demonstrated its high efficiency 

in time series analysis and forecasting. There are visible trends in seasonal turbidity changes in the 

Portland area with lower turbidity values at the end of summer low water period until early fall 

(July-September), and higher values during winter months, such as December and January (Fig. 

4), which usually receive the highest amount of precipitation. Time decomposition analysis also 

demonstrated turbidity peaks during winter and spring months. The seasonal trend indicates that 

turbidity values are generally higher in the middle of the month compared to the beginning and 

end. This pattern may be influenced by several factors, such as increased agricultural activities, 

runoff from periodic rainfall events, or human activities that peak mid-month. 

Furthermore, the year 2022, for which USGS data was available for the area of interest, exhibited 

extreme weather conditions, including snowfall in spring (April) and a prolonged heat wave with 

90-degree-plus days during the summer period.14 Portland had 1.6 inches of snow on April 11 

2022, which was the first measurable snow in April at Portland International Airport since records 

started there in 1940. The same year Portland saw its third longest heat wave in recorded history 

with eight consecutive days of temperatures of 90 degrees or higher (from July 24 to July 31). 

Severe weather conditions with extreme high and low temperatures may have had a great impact 

in streamflow and turbidity levels at streams in the Portland area. 
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C  

Figure 4. Seasonal turbidity trends at the example station of Johnson Creek at Pleasant Home, OR: 

(A) boxplot for monthly values; (B) boxplot seasonal values; (C) Time series decomposition plot. 

 

3.2 XGBoost model 

The USGS water quality datasets provide a strong foundation for model development, enabling 

accurate predictions.15, 16 However, missing data is a common challenge that can significantly 

impact model performance.17, 18 Bridging these gaps often requires costly data acquisition 

processes, involving data cleaning, integration, and potentially the collection of new information. 

Moreover, machine learning approaches have been instrumental in addressing difficulties in short-

term load forecasting by integrating meteorological and climate data, utilizing big data, and 

employing hybrid models.19 In this study we adopted the extreme gradient boosting (XGBoost) for 

univariate time series model which was implemented through an optimized library created by Chen 

and Guestrin.20 Figures 5 and 6 below display the results of using XGBoost. 

The time series dataset is processed through two techniques for turbidity prediction. Data acquired 

from one station was split into training and testing datasets. Mar-2021 to Mar-2022 and from Jun-

2022 to Nov-2022 for training and testing respectively. The error metrics of the model were 

evaluated using root mean squared error (RMSE), Mean Absolute Percentage Error (MAPE) and 

mean absolute error (MAE).  
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Figure 5. Univariate XGBoost turbidity forecasting for Badger Creek at Rugg Road Near Gresham, 

OR. (A) forecast vs. actual plot of turbidity of month May 2022. (B) forecast vs. actual plot of 

turbidity of first week of September May 2022.  

 
Figure 6. Best predicted days by the model. 
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Error metrics on the test dataset shows an RMSE of 51619 which suggests that, on average, the 

model's predictions deviate from the actual values by approximately 51619 units.This is quite 

large, indicating substantial errors in predictions. Measured MAE of 192.70 suggests that, on 

average, the model's predictions are off by 192.70 units from the actual values. while a MAPE of 

970.78% is extremely high, suggesting that, on average, the predictions are off by 970.78% from 

the actual values. 

Overall, high RMSE and extremely high MAPE indicate that the model's predictions are far from 

the actual values, both in absolute terms and relative to the actual values. In addition, the disparity 

between RMSE and MAE suggests the presence of some large errors (outliers) that are 

significantly affecting the RMSE value. To improve the accuracy of performing forecasting models 

with these datasets, we recommend the following: 

1. Thorough examination of the retrieved data for  outliers or anomalies that might be 

disproportionately affecting the error metrics. 

2. Optimizing the model by exploring different algorithms, hyperparameter tuning, or 

incorporating more relevant features.  

3. Turbidity, as an optical characteristic of water, can not be studied in isolation, as it can be 

influenced by both internal and external factors of the system. 

3.3 Challenges 

Throughout the completion of this project some challenges were encountered. The first challenge 

that arose was that the USGS turbidity data were sparse and not easily accessible. Additionally, 

among the limited number of stations that had turbidity data, we observed inconsistencies in how 

different stations recorded and stored this data. Both of these challenges complicated the data 

retrieval and data cleaning procedure, making it a time-consuming process. It is also important to 

note that turbidity data alone is difficult to interpret. Additional watershed and stream parameters 

are needed for a comprehensive analysis of water quality and ecosystem health.  

4. Conclusions  

Finding and interpreting data for research can be challenging. To address this, we developed a web 

dashboard that facilitates the retrieval and analysis of USGS turbidity data. Accessing turbidity 

data through a dashboard is arguably more palatable and convenient compared to the laborious and 

time-consuming manual data retrieval. While this tool provides a quick summary, seasonal trends 

and forecasts on instantaneous USGS data, interpreting turbidity data alone is difficult. To achieve 

a comprehensive analysis of water quality and ecosystem health, it is essential to include additional 

watershed and stream parameters. Thus, incorporating more variables into the dashboard would 

significantly enhance its utility. Future work will also require expanding the dashboard's 

functionality, including the integration of other water quality parameters. 
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